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Abstract—Prognostics-enablement of power actuator 
components involves acquisition and processing of multiple 
data and sensor inputs. Data collection and fusion creates an 
accurate prognostic prediction. To that end, Ridgetop has 
developed an extensible Prognostic Analysis System 
Platform and a companion Prognostics Telemetry Harness. 

With an Electro-Mechanical Actuator (EMA) as the focus, 
this paper describes the extensible architecture for a 
Prognostics Health Management (PHM) system providing 
State of Health (SoH) and Remaining Useful Life' (RUL) 
metrics. The key enabler is the Ridgetop Prognostics 
Telemetry Harness (RPTH), which collects and 
preprocesses signals relating to the health of dynamically 
executing components and subsystems. 

With an ultimate target of 100% up-time, prognostics is an 
effective tool for managing the corrective early actions 
required to avoid costly down-time events. An example is 
detailed using a common EMA and further analysis explores 
the return-on-investment justifying prognostics adoption.12 

TABLE OF CONTENTS 

TABLE OF CONTENTS.......................................................... 1 
INTRODUCTION ................................................................... 1 
ELECTRONIC PROGNOSTIC ENABLEMENT......................... 2 
A PROGNOSTICS ANALYSIS SYSTEM PLATFORM ................ 3 
ACTUATOR PROGNOSTICS .................................................. 5 
SIMULINK MODEL AND RESULTS ....................................... 6 
RETURN ON INVESTMENT ................................................... 8 
SUMMARY............................................................................ 9 
ACKNOWLEDGEMENTS ..................................................... 10 
REFERENCES ..................................................................... 10 
BIOGRAPHY ....................................................................... 11 

                                                           

1 1-4244-1488-1/08/$25.00 ©2008 IEEE 

2 IEEEAC Paper #1114, Version 1, Submitted Oct. 22, 2007 

INTRODUCTION 

Actuators are critical components in many aerospace 
systems. Their failure can lead to catastrophic 
consequences. Often difficult and expensive to inspect, 
actuators are frequently removed and replaced for 
maintenance reasons, whether faulty or not.  
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Figure 1: A Linear Actuator 

Actuators perform a mechanical motion to a load in 
response to an input signal. Unfortunately, technicians 
cannot always replicate problems reported during operation. 
These problems are termed “No Trouble Found”, “Retest 
OK”, or “Could Not Duplicate”. The use of Electro-
Mechanical Actuators (EMAs) in flight- and mission-critical 
applications, such as spacecraft, military air vehicles, and 
commercial aircraft, is increasing and “fly-by-wire” or 
“drive-by-wire” systems have replaced hydraulic control 
lines with electrical lines. This eliminates fluid leakage 
problems while improving control capabilities and reducing 
weight. EMAs have become ubiquitous in aerospace 
applications — from robotics to rocket engine control. The 
trend of all-electric systems makes EMA diagnostic and 
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prognostic-enablement a system design requirement sure to 
enhance the system reliability of flight- and mission-critical 
systems. For ease of adoption, non-invasive prognostic 
solutions for EMAs need development. 

Prognostics, or predictive diagnostics, uses observations of 
measurements to develop a prediction of impending failure 
of the observed system. In some cases, a precursor event or 
“signature” is directly measured. In other cases, multivariate 
inputs are necessary to determine the precursor event, along 
with the fault-to-failure progression model. 

Prognostics methodology can extract pre-cursor information 
from the EMAs. This predicts failures and provides support 
to Condition-Based Maintenance (CBM) and Autonomic 
Logistics Systems (ALS). The concepts from this work have 
already been applied to a practical and representative EMA 
design along with associated testing and verification. [3] 
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Figure 2: Application, Scalability, and Process Flow of 
Ridgetop’s Telemetry Harness 

ELECTRONIC PROGNOSTIC ENABLEMENT 

A properly configured, on-board, prognostic-enabled EMA 
system: 

• Monitors State-of-Health (SoH) during operation 

• Extracts prognostic information from SoH 

• Reduces overall test costs 

• Improves fault coverage through dedicated prognostic 
circuitry added to EMA circuit design 

• Provides SoH and Remaining Useful Life (RUL) 
metrics through use as remote diagnostics [4] 

• Collects data and manages assets with full information 
on the SOH and RUL from a central collection point 
linked to the on-board prognostics sensor 

 
With prognostics capabilities now extended to electronic 
modules, the acquisition of system information must be 
assembled in a hierarchical manner, assessing failure rates 
for subassemblies within the modules and determining the 
modules’ SoH and RUL from a wide range of observations, 
prognostic sensors, and algorithms . 
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Figure 3: Prognostics Elements Diagram 

This information fits into a taxonomy consisting of 
diagnostics, prognostics, and system-level Integrated 
Vehicle Health Management (IVHM). To be a versatile 
analysis platform, the system architecture should be 
intuitive, easy to use, and simple to interface to other 
applications. Unlike systems developed for the mechanical 
world of turbines and engines, this architecture is optimized 
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for electronic systems. This includes short time constants, 
non-monotonic component degradation, and intermittencies. 

Electronic Prognostics and Health Management (ePHM) 
offers the following benefits: 

• Instant determination of the electronic module’s SoH 

• Prediction of electronic module’s RUL 

• Advance notice of impending failures 

• Integration with the supply chain through ALS 
 
Figure 4 shows the design process or methodology applying 
prognostics to a general system module. In this application, 
known problem areas are ranked in a Pareto chart, 
precursors for “problem” components are derived, and 
appropriate corresponding observation structures are 
developed. 
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Figure 4: Electronics Prognostics Design Process 

A CPU processes the data into meaningful “good/bad” 
indicators. 

Component or Subsystem 

The authors describe a prognostics approach that includes 
both the data collection and the analysis for calculation of 
SoH and RUL metrics for EMAs. 

A PROGNOSTICS ANALYSIS SYSTEM PLATFORM 

Ridgetop’s architecture supports the prognostics-enablement 
of a network of distributed assets using wireless 
transmission technology and a centralized collection point 
for examining the individual assets’ State-of-Health and 
Remaining Useful Life (see Figure 4). This approach 
supports CBM strategies reducing the cost of maintaining 
these systems across a widely dispersed area, improving the 
overall “up-time” of these assets, and equipping service 
personnel with correct sets of replacement parts and 
diagnostic tools to rapidly repair or maintain the systems. 

Figure 2 illustrates a multi-level architecture of subsystems 
and components. Health monitoring occurs at several levels, 
from IC die- to system-level. For example, an actuator 
system might consist of power sources, characterized 
actuator (at various levels of model abstraction), and loads. 
Each element has its own hierarchically modeled 
subsystems using an underlying, structured, XML approach. 

Data Acquisition and Storage 

Ridgetop’s electronic prognostics solution provides the 
ability to store sensor data and applies algorithms to make 
RUL predictions for on-board electronic systems, 
subsystems, and components. Through the collection and 
analysis of time series data, the system monitors 
quantitative metrics associated with physical variables, 
performance variables, and various quality of service 
metrics.  

Physical variables include temperatures, voltages, and 
currents throughout the system. Performance variables 
include power output and efficiency. Quality of service 
metrics include RUL, Time-to-Failure (TTF), and 
Probability of Failure (POF). 

These variables provide a rich foundation for building 
empirical models for system components individually (for 
example, generators, and batteries) and for individual 
components in a system. 

Benefits of this approach include discovery of root cause, 
observation of anomalous behavior at the system-level, and 
early detection of trends toward failure. While independent 
sensors would show normal operation, trends indicating 
failure make early detection and preventative action 
possible. 
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Figure 5: Extensible Prognostics-Enabling Architecture for 
a Wireless Network of Distributed Assets and Centralized 

Collection Points 

In the deployed system, it is advantageous to obtain 
information as quickly as possible. So, a real-time link with 
the deployed system is very powerful benefit. This link can 
be via satellite, landline, or wireless connection to the 
central collection point. With the system SoH data, ground 
support personnel will know exactly what spare parts are 
needed to maintain a high level of operational readiness.  

Data is stored in a hierarchical structure (see Figure 6). An 
XML-type (Extensible Markup Language) software 
architecture offers these levels of abstraction as well as 
compliance with MIMOSA standards. A simple example for 
an avionics actuator can be represented as a system with 
subsystems and individual components with XML which is 
imported into a database platform and used for further 
diagnostics and prognostics support. 
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Figure 6: Architectural View Showing an Actuator System 

at the Top-Level 

Cognitive Layer or Engine 

The cognitive layer (see Figure 2) provides the necessary 
fault trend analysis and recommends maintenance actions to 
the scheduler. An easy-to-use interface with domain experts 
in the field provides support for engineering changes and 
equipment recommendations. The primary functions include 
performing fault isolation via more enhanced diagnostics, 
prognostic assessments, health management, false alarm 
mitigation, and data trending. The interface supports 
optimized maintenance planning and better class-wide 
management capabilities. Overall, PHM and fault trending 
analysis reduces total maintenance costs and increases the 
reliability of in-service actuators.  

The Ridgetop State Estimation Technique (RSET) approach 
uses a self-learning algorithm to compare predicted and 
measured output of sensors already existing within the 
monitored system. The residual between the measured and 
predicted value provides a quantitative basis for incipient 
fault detection and diagnosis. 

Ridgetop Prognostics Telemetry Harness 

The key enabler for achieving prognostics capabilities is a 
Ridgetop Prognostics Telemetry Harness (RPTH). The 
RPTH collects and preprocesses time series signals relating 
to the health of dynamically executing components and 
subsystems in high reliability enterprise servers. The RPTH 
signals are continuously archived to an offline circular file ( 
the “Black Box Flight Recorder”) while being processed in 
real-time using advanced pattern recognition for proactive 
anomaly detection and RUL estimation with associated 
quantitative confidence factors.  

Advanced pattern recognition techniques allow sensitive 
early detection of a wide range of incipient failures in 
actuator power systems. Even mechanical faults are 
susceptible to prognostic detection. The electrical 
perturbations caused by mechanical faults are detectable. 
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When correlated with a specific condition, a mechanical 
fault has a precursor signature, same as an incipient fault 
with an electrical origin.  

These mechanical faults or conditions include specific 
problems such as mechanical wear (bearing aging and 
lubricant contamination), environmental contributors 
(thermal anomalies or faults preceded by patterns in wind 
speed and direction), degraded/failed sensors, and 
degradation of mechanical and electronic interconnects. 
These techniques help substantially increase component 
reliability margins and system availability goals while 
reducing (through improved root cause analysis) costly 
troubleshooting-diagnosis-repair cycles that are a significant 
cost issue for many of these systems. 

A particular challenge in setting the prognostic trigger point 
is the avoidance of false-alarms (detection too early in 
system’s lifetime) and avoidance of late notifications. While 
the sensors used to acquire SoH information may be both 
diagnostic and prognostic, neither sensor type provides a 
prediction of when the failure is likely to occur. One 
predictive analysis methodology collects sensor data from 
many sources and conditions the collected data to enable 
probabilistic calculations, including Bayesian calculations. 
Bayesian calculations can be quite complex, especially 
when many variables are involved. After data fusion, it is 
necessary to run a multiplicity of calculations to predict the 
likelihood of failure of one of the power subsystems within 
a specified period. Accordingly, accurate prediction also 
requires collection, conditioning, and processing of 
increasingly complex and massive sets of data. 

A key benefit of the Ridgetop Electronic Prognostics 
Platform is the use of collected information to calculate 
system RUL. There are several techniques employed for 
such estimates including: analysis of actual operands and 
measurands, existing diagnostic output vectors, prognostic 
sensors, and "canaries". Data from the constellation of these 
inputs is collected and fused. Algorithms yield composite 
estimates of system health at a particular level within the 
system hierarchy. The algorithms available include adaptive 
model-based reasoners, RSET, Bayesian network reasoners, 
and others. With a platform available for quick analysis, 
various options can be explored. 

For example, at the board and module levels, a Built-In 
Self-Test (BIST) identifies and isolates faults, as well as 
providing predictive capability of impending failures. 
Emphasis is placed on reducing false alarms and identifying 
prognostic techniques to anticipate system degradation and 
allow automated recovery. This prognostic approach 
provides an accurate picture of forthcoming faults and 
component degradation – the predictive indicators of failure 
– and is extremely useful to the crew. The solution also 
allows timely action needed to avoid costly or catastrophic 
damage to critical Line Replaceable Units (LRUs) and to 
maintain availability/readiness rates for weapon systems.  

ACTUATOR PROGNOSTICS 

Prognostic techniques initially developed by Ridgetop for 
Switch-Mode Power Supplies (SMPS) are applicable to 
electronic sub-systems, such as the actuator driver in a 
brushless DC motor system.  

The brushless DC motor uses permanent magnets attached 
to a rotor in place of the armature windings in a 
conventional DC motor. Field winding are driven by a 
multi-phase (generally three phase) commutation signal that 
uses a power drive stage similar to topologies in DC-to-DC 
power converters. 

Typically, three Hall sensors detect rotor position. 
Commutation is based on the Hall sensor inputs. Two 
alternative approaches for positioning feedback are 1) taking 
the back EMF directly from the windings and 2) using an 
optical sensor for precise position feedback. A 
microprocessor is generally required to convert position 
feedback and motion profiles into a commutation signal. 
The DC brushless motor is common in industrial 
applications requiring higher performance and reliability. 
This is due to the motor’s brush-free operation, linear 
current/torque relationship, smoother acceleration, and clean 
spark-free operation. 
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Figure 7: State Diagram of a Close-Loop DC 
Motor/Actuator System 

A closed loop system consisting of an actuator and a 
position sensing feedback loop (Figure 7) tracks position 
with a preset motion profile. The system acts as a transfer 
function responding to perturbations in either set position or 
motor torque. Critical components – windings, power 
switches, sensors, and microprocessor – exhibit fault-to-
failure progression signatures manifesting in the transfer 
function of the control loop. The non-invasive prognostic 
detector is an impulse (either in the motion profile or the 
load torque) and data register to record the recovery 
waveform for position, angular speed, or force output. A 
first-order analysis compares the captured waveform of a 
suspect motion system against a baseline signature recorded 
on a new system. Deviations from the baseline suggest an 
anomaly has been observation of an anomaly. 
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The simulation shows following error resulting from lead 
screw in normal and degraded condition (worn bearing). 
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Figure 8: An Impulse Response in an Actuator Caused by a 

Position Jog 

SIMULINK MODEL AND RESULTS 

To help better understand the behavior of critical parts in an 
EMA circuit and to test our hypotheses regarding 
component degradation, the actuator circuit was simulated 
using the MATLAB Simulink tool set. The circuit in Figure 
9 is the representation of the DC motor, actuator circuit, and 
the prognostics for the Rotor shaft position. 

 
Figure 9: Actuator Circuit (Simulink Model) 

The DC motor consists of electrical and mechanical parts as 
illustrated in Figure 10. The electrical term is made of an 
inductance and a resistance, with a transfer function: 

mm RsL
sGE

+
= 1

)(  (1) 

 
Figure 10: DC Motor (Simulink Model) 

Furthermore, the motor converts electrical armature current 
into mechanical torque of the motor as: 

afm ikiT =  (2) 

where if is field current, and ia armature current. The back 
emf is given by:  

mfb ikv ω′=  (3) 

and the supply voltage to the rotor circuit and inertia of the 
rotor as: 

b
a

aaaa v
dt

di
LiRv ++=  (4) 

mmLm
m

m bTT
dt

d
J ωω −−=  (5) 

where ωm is angular speed of the motor, Ra armature 
resistance, La armature inductance, Jm inertia of the rotor, 
and bm dampening constant of the rotor, see Figure 11. From 
these equations the second term, which is of mechanical 
nature, can be established. Inertia and torque are the main 
components of this transfer function: 

LL IsJ
sG

+
= 1

)(  (6) 

The signal coming from the DC motor is fed into Pulse 
Width Modulator (PWM) and divided into two signals, 
which are opposite in magnitude (Figure 12). These two 
different signals are used to turn on and off MOSFETs in 
the H-bridge (Figure 13). 
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Figure 11: Equivalent Circuit of a DC Motor and Armature 

Mechanical Loading Arm 

The H-bridge consists of four MOSFETs that are connected 
at the gates diagonally (M1 and M3, and M2 and M4). The 
outputs of the H-bridge are summed and fed into the DC 
motor. 

 
Figure 12: PWM Circuit (Simulink Model) 

 
Figure 13: H – Bridge (Simulink Model) 

The signal builder, a ramp, was non-invasively induced into 
the circuit. The signal is used to mimic how the DC motor 

should behave. It is labeled as Target position (solid line). 
The Phase Detector detects changes in the position between 
the Target position and the actual position of the rotor 
(dashed line). That signal is then summed and displayed as 
Following Error. Also, the Rotor position, which is directly 
taken from the DC motor, is compared to the Target position 
on the same graph. 
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Figure 14: Simulated Target Position vs. Rotor Position (All 

MOSFETs are good) (Simulink Model) 
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Figure 15. Simulated Following Error (All MOSFETs are 

good) (Simulink Model) 

Figure 14 and Figure 15 are an example of the position and 
Following Error when all the components in the circuit are 
in the working condition.  

We can observe on Figure 14 that the Rotor position is 
exactly following the Target position from the start of the 
simulation until the target position changes direction. At 
that point the Rotor position overshoots, but it recovers very 
quickly. The overshoot is due to the slow response time of 
the Control system. The Following Error or deviation from 
the target, as seen on Figure 15, is at zero during the whole 
simulation. As long as the Rotor position follows the Target 
position the error is at zero. Oscillations from the zero error 
can be seen at the start of simulation and at the place where 
the Target position changes direction. This is due to the 
feedback and its response.  

In Figure 16 and Figure 17 one of the MOSFETs, M1 or 
M3, in the H-bridge breaks down, meaning, that the internal 
resistance will increase. In Figure 16 the Rotor position is at 
the higher degree level then the Target position during the 
entire simulation. At the point of direction change, the Rotor 
position is overshooting a little, but it compensates and rides 
again next to the Target position but still with an error. 



 
8 

00066

1 2 3 4 5 6 7 8 9 10
0

Time (sec)

P
os

iti
on

 (
de

g)
50

20

30

40

10

  - - -   Rotor Position

 Target Position

 
Figure 16: Simulated Target Position vs. Rotor Position (M1 

or M3 are damaged) (Simulink Model) 
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Figure 17: Simulated Following Error (M1 or M3 are 

damaged) (Simulink Model) 

Figure 17 is the representation of the difference between 
Rotor position and the Target position. If the Rotor position 
is at the higher degree level from the Target position then 
the Following Error is negative, meaning the rotor should 
turn slower. Big errors, at times 1 sec and 6.3 sec, in the 
Following Error are due to the faster change in the direction 
of the Target position and the slow response of the Rotor 
position. 

 
Figure 18: Simulated Target position vs. Rotor position (M2 

or M4 are damaged) (Simulink Model) 

 
Figure 19: Simulated Following Error (M2 or M4 are 

damaged) (Simulink Model) 

In Figure 18 and Figure 19 one of the other two MOSFETs 
is degraded. In Figure 18, the output of the Rotor position is 
below, legging, the Target position all the way, even when 
the impulse changes its direction. The Following Error in 
Figure 19 is always positive, but it increases or decreases 

depending on how close the Rotor position is to the Target 
position. 

When the H-bridge is working properly the Following Error 
is at zero because the Rotor position is following exactly the 
Target position. This can be described in the example of the 
airplane’s wing-flap. When the Target position is set to go 
to 40 degrees and then is lowered to 30 degrees the rotor 
position should follow the same line. The DC Motor and its 
control system have a very slow response time and that is 
why discrepancies in the position graphs can be seen. Every 
time the direction of the Target position is changed the 
overshoot of the Rotor position is seen due to the slow 
response of the control system.  

When one of the sides of the H-bridge is not functioning 
properly, there is higher resistance in one of the MOSFETs, 
then the response of the circuit is different. If M1 or M3 
break down, the DC Motor is going to be driven harder and 
the Rotor position is going to be at the higher degree then 
the Target position. The Following Error is going to be 
positive, meaning the DC Motor should be slowed down. 
The current in the side that has higher resistance is lower in 
value then the other side of the H-bridge. However, if one of 
the other two MOSFETs, M2 or M4, break down then the 
Rotor position is legging the target position and it does not 
reach target degrees. In the airplane wing flaps these errors 
in position can cause airplane to turn slower or faster then 
expected. Exact functioning of these parts is very crucial for 
the stability of the airplane.  

RETURN ON INVESTMENT 

In general, the Return-on-Investment (ROI) for the adoption 
of electronic prognostics consists of an analysis of the 
savings associated with the implementation, less the cost of 
implementation, divided by the investment required. This 
relationship is mathematically stated: 

ROI = (Savings – Implementation costs)/  
 (Investment required) 

For example, in the case of aircraft, the identified sources of 
savings from prognostics include:  

• Increased aircraft availability 

• Reduced loss of aircraft 

• Reduction in unplanned maintenance (all aircraft not 
just those in the battlefield) of up to 20% [8] 

• Moving spares to the proper place (logistics) 

• Better use of inventory 

• Better spending controls on spare inventory 

• Reduced expenditure in armaments required to 
accomplish mission 

• Increase in mission success rate 
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The costs of applying prognostics can be separated into 
three categories: 

• Non-recurring engineering (NRE) cost of adding the 
prognostics to an actuator 

• Per unit costs of the prognostic components 

• False Alarm Cost (if failure rate of the prognostic 
circuitry approaches the failure rate of the component 
being monitored) 

In reference [9] it was shown that ROI for prognostics-
enabling high efficiency power converters can be up to 20% 
and is often significantly higher. Separately, Sun 
Microsystems found that proper adoption of electronic 
prognostics to their Blade servers reduced their NTF rates 
from over 50% to less than 10%.3 

Missed Opportunity: the VW Passat Example  

Due to the high cost and complexity involved in purchasing, 
financing, and servicing aircraft, ROI is often difficult to 
assess. A more accessible but equally compelling case can 
be made examining the recent recall and on-going National 
Highway Traffic Safety Administration (NHTSA) probe of 
the VW Passat. 

An investigation, began in May 2007, revealed there had 
been 78 reports of engine fires and two injuries involved 
with the VW Passat. Specifically, the Passat sedans from the 
2000-2003 model year equipped with 4- and 6-cylinder 
engines. The engine fires are attributed to failure of the 
ignition coil. [10] 

Table 1: Statistical Data for VW Passat Recall [11] 

Recall Specifics Data 

Total Units 352,668 
Affected (Recalled) Units 345,642 [12] 
Failure Incidents (to date) 78 
Failure Cause (LRU) Ignition Coil 
Warranty Claims 14850 
LRU Cost $173.76 
Unit Cost, Low $21,750 
Unit Cost, High $31,575 
Unit Cost, Average $26,662 

  

Before calculating ROI, an estimate is required for the recall 
cost. Factors affecting the recall cost include: 

• LRUs per unit 

• Labor cost per hour 

• Labor time 

• Recall administrative cost per unit   
 
                                                           

3 Gross, K. “Sun Microsystems Electronic Prognostics Experience”, NDIA 
Conference 2006, Miami, Florida 

These factors are the primary assumptions needed to make 
the recall cost calculation. 

Table 2: Recall Cost Assumptions 

Recall Cost Assumptions Value 

LRUs per unit 1 
Labor cost per hour $100 
Labor time per unit 1 hour 
Recall administrative cost per unit $150 

 

With these factors identified and estimated, the recall cost 
can be calculated. 

Recall Cost (per unit) = $423.76 
Recall Cost (total) = $146,469,254 

With a $500K investment cost as the price for a corporate 
prognostics IP license, the ROI calculation is: 

ROI =   [146,620,960 – 500,000] / 500,000 = 292% 

Not bad for an investment of $0.71 per unit (car), 
particularly when weighted against an estimated $423.76 
recall cost per car which does not take into account 
inestimable values such as customer satisfaction, investor 
confidence, and positive brand recognition. While damage 
to these somewhat nebulous values is hard to assess, it’s not 
hard at all to track and tally the losses incurred by 
businesses suffering from defect-related set-backs.  

For VW, a faulty component with a failure rate of 0.02% 
occurring in 78 cars resulted in the recall of 346,000 cars or 
96.1% of all cars manufactured over a four-year period. Or, 
to put it in another way, $13,000 (approximately one case) 
of defective ignition coils cost the company $146.6 million 
dollars. That comes out to $1.9 million dollars per defective 
ignition coil.  

One benefit, yet to be mentioned, of a successful electronic 
prognostics deployment is the reduction in the very defects 
and failures that are the root causes of a product buy-backs, 
refunds, product returns, and recall campaigns. 

These ROI calculation demonstrate the tremendous gains 
possible through a modest investment as well as the cost of 
missed opportunities. Electronic prognostics are one of 
those rare value-added propositions customers can easily 
understand and justify when couched in terms of improved 
quality, performance, and maintenance reductions.        

SUMMARY 

This paper shows the efficacy of using electronic 
prognostics on actuator drive systems used in commercial 
and mil-aero systems. Electronic prognostics can be linked 
to larger networks to provide a dynamically updated 
inventory of assets indicating state-of-health and remaining 



 
10 

useful life. This is very beneficial in military and industrial 
automation settings and can link to larger system level 
prognostics, such as the generator system in Figure 20, and 
maintenance ALS. 

This incorporates external prognostics extraction blocks 
multiplexed to external Integrated Health Monitoring 
System. 

 
Figure 20: A System-Level Solution for Synchronous 

Generator 

The non-invasive approach to electronic prognostics can be 
implemented on a variety of power electronic systems 
where access to internal circuit nodes is not available. 
Starting with a state diagram description of the system 
operating with feedback, one can determine the out response 
to a given input perturbation. Finally, with the 
understanding of how changes in the condition of interior 
components affect the response function, component 
degradation can be measured indirectly. Fault-to-failure 
progression models are used to derive RUL estimations. 
This approach has tremendous advantage over direct 
measurement schemes in which sensors must be added 
inside the circuit that by virtue of their own reliability can 
increase the probability of failure and reduce the mean 
lifetime of the system. High-reliability, high-fault coverage 
solutions can be implemented for power electronics using 
existing terminal access. 
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