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Abstract—Prognostics-enablement of power actuator

components involves acquisition and processing ufipte INTRODUCTION
data and sensor inputs. Data collection and fusieates an
accurate prognostic prediction. To that end, Riogebtas
developed an extensible Prognostic Analysis Syste
Platform and a companion Prognostics Telemetry eksn

Actuators are critical components in many aerospace
rsttems. Their failure can lead to catastrophic
consequences. Often difficult and expensive to dogp

With an Electro-Mechanical Actuator (EMA) as thecis, actuators — are frequently removed and replaced for
this paper describes the extensible architecture do maintenance reasons, whether faulty or not.

Prognostics Health Management (PHM) system progidin
State of Health (SoH) and Remaining Useful LifeU{R
metrics. The key enabler is the Ridgetop Prognestic
Telemetry Harness (RPTH), which collects and
preprocesses signals relating to the health of micaly
executing components and subsystems.

With an ultimate target of 100% up-time, prognasiic an
effective tool for managing the corrective earlyti@ts
required to avoid costly down-time events. An exkamp
detailed using a common EMA and further analysjgdaes
the return-on-investment justifying prognostics piitmn.*?
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prognostic-enablement a system design requiremgatte
enhance the system reliability of flight- and misscritical
systems. For ease of adoption, non-invasive prdgnos
solutions for EMAs need development.

Prognostics, or predictive diagnostics, uses olasiems of
measurements to develop a prediction of impendaigre
of the observed system. In some cases, a precevsok or
“signature” is directly measured. In other casesltivariate
inputs are necessary to determine the precursaot,ealeng
with the fault-to-failure progression model.

Prognostics methodology can extract pre-cursoriné&ion
from the EMAs. This predicts failures and providgepport

to Condition-Based Maintenance (CBM) and Autonomic®

Logistics Systems (ALS). The concepts from thisknoave
already been applied to a practical and represeateMA
design along with associated testing and verificatj3]

Applications for Ridgetop’s Telemetry Harness
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Figure 2: Application, Scalability, and ProcessviFlaf
Ridgetop’s Telemetry Harness

ELECTRONIC PROGNOSTIC ENABLEMENT

A properly configured, on-board, prognostic-enabiedA
system:

Monitors State-of-Health (SoH) during operation
Extracts prognostic information from SoH
Reduces overall test costs

Improves fault coverage through dedicated progoosti
circuitry added to EMA circuit design

Provides SoH and Remaining Useful Life (RUL)
metrics through use as remote diagnostics [4]

Collects data and manages assets with full infdonat
on the SOH and RUL from a central collection point
linked to the on-board prognostics sensor

With prognostics capabilities now extended to eteit
modules, the acquisition of system information mbst
assembled in a hierarchical manner, assessingdaiaites
for subassemblies within the modules and determitire
modules’ SoH and RUL from a wide range of obseors;]
prognostic sensors, and algorithms .
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Figure 3: Prognostics Elements Diagram
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This information fits into a taxonomy consisting of
diagnostics, prognostics, and system-level Integrat
Vehicle Health Management (IVHM). To be a versatile
analysis platform, the system architecture shoulel b
intuitive, easy to use, and simple to interface otter
applications. Unlike systems developed for the raadal
world of turbines and engines, this architecturepmized



for electronic systems. This includes short timeistants, Component or Subsystem

non-monotonic component degradation, and internates. The authors describe a prognostics approach tichdes

oth the data collection and the analysis for datan of

Electronic Prognostics and Health Management (ePHM :
oH and RUL metrics for EMAs.

offers the following benefits:

« Instant determination of the electronic module’$iSo A PROGNOSTICSANALYSISSYSTEM PLATFORM
» Prediction of electronic module’s RUL
» Advance notice of impending failures
* Integration with the supply chain through ALS

Ridgetop’s architecture supports the prognostiabkEment
of a network of distributed assets using wireless
transmission technology and a centralized collacpoint
) ) . for examining the individual assets’ State-of-Hea#nd
Figure 4 shows the design process or methodologlyiy ~ Remaining Useful Life (see Figure 4). This approach
prognostics to a general system moduIt_—:a In thidieaton, supports CBM strategies reducing the cost of miiirtg
known problem areas are ranked in a Pareto charfpese systems across a widely dispersed area, Vmgrthe
precursors for “problem” components are derivedd an gyerall “up-time” of these assets, and equippingvise
appropriate corresponding observation structure® ahersonnel with correct sets of replacement partd an

developed. diagnostic tools to rapidly repair or maintain gystems.

Step 1: Characterize Actuator System Failures Figure 2 illustrates a multi-level architecturesafbsystems
and components. Health monitoring occurs at sevevals,
from IC die- to system-level. For example, an aittua

B/ — system might consist of power sources, charactrize
X B/ » — actuator (at various levels of model abstractiamyd loads.
B/ X __ Each element has its own hierarchically modeled
subsystems using an underlying, structured, XMLreagh.
Component’s Key Failure Pareto Ranking
Data Acquisition and Storage
Step 2: Extract Precursor Signatures to Failure Ridgetop’s electronic prognostics solution provideee
ability to store sensor data and applies algoritbhonmake
= o= RUL predictions for on-board electronic systems,
Target Position vs. £ 4 =7 === subsystems, and components. Through the collectiah
Rotor Position % » 7~ analysis of time series data, the system monitors
o

quantitative metrics associated with physical \aes,
performance variables, and various quality of sErvi
metrics.

Following Error . . .
Physical variables include temperatures, voltagasd

currents throughout the system. Performance vasabl

o1z s "‘Timf;(sei) R include power output and efficiency. Quality of \dee
T metrics include RUL, Time-to-Failure (TTF), and
Degradation 2 I Probability of Failure (POF).
Curve e I ™ ) _ ) ) o
- These variables provide a rich foundation for Huoid
00 9 80 70 6 50 40 0 20 1.0 0 empirical models for system components individugftyr
Lifetime, Percent example, generators, and batteries) and for indalid

components in a system.

Step 3: Calculate Remaining Useful Lifetime (RUL)

Useful Life RUL Benefits of this approach include discovery of roause,

observation of anomalous behavior at the systerklend
Prognostic early detection of trends toward failure. While épéndent
g Warning Point | sensors would show normal operation, trends initigat
Lifetime of SMPS € failure make early detection and preventative actio
Actuator System § J\ Wearout. pOSSible.
o Tme
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Figure 4: Electronics Prognostics Design Process

A CPU processes the data into meaningful “good/bad”
indicators.
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at the Top-Level
Cognitive Layer or Engine
The cognitive layer (see Figure 2) provides theessary
fault trend analysis and recommends maintenanéenacio
the scheduler. An easy-to-use interface with doreaperts
o . in the field provides support for engineering chesxgnd
| FPGA Integrated Circuits | equ|pm§nt recom.mend_atlon.s. The primary functhnh_me
I . Self-Healing  *NBTI [ performing fault isolation via more enhanced diagivs,
| +SJBIST *TDDB [ prognostic assessments, health management, fadsm al
: * Radiation I mitigation, and data trending. The interface supor
| Digital Power Sensors : optimized maintena_rjge planning and better cla_s&:twid
| | management capabilities. Overall, PHM and faulhdieg
T T 0 = T T analysis reduces total maintenance costs and sesethe
Ridgetop On-Board “Prognostics-Enabled” Device reliability of in-service actuators.
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Flgure 5: Extensible Progno_sﬂcs-EnabIlng Archme_etfor The Ridgetop State Estimation Technique (RSET) @gupt
a Wireless Network of DIS.tI'IbUte.d Assets and Cdizted uses a self-learning algorithm to compare predicied
Collection Points measured output of sensors already existing withie

_monitored system. The residual between the measamdd

In the deployed system, it is advantageous to mbtaipiegicted value provides a quantitative basis fmipient
information as quickly as possible. So, a real-timk with 5,1t detection and diagnosis.

the deployed system is very powerful benefit. Tink can
be via satellite, landline, or wireless connectitan the  Ridgetop Prognostics Telemetry Harness
central collection point. With the system SoH dafasund

support personnel will know exactly what spare pate The key enabler for achieving prognostics capadslits a
needed to maintain a high level of operational irezss. Ridgetop Prognostics Telemetry Harness (RPTH). The
) ) ) ) ) RPTH collects and preprocesses time series sigeksng

Data is stored in a hierarchical structure (se@if€i@). AN 5 the health of dynamically executing components a

XML-type (Extensible Markup Language) software gypsystems in high reliability enterprise serv@ite RPTH
architecture offers these levels of abstractionwadl as signals are continuously archived to an offlineuiar file (

compliance with MIMOSA standards. A simple examiole o “Black Box Flight Recorder”) while being proses in

an avionics actuator can be represented as a sysim e5)time using advanced pattern recognition fayaptive
subsystems and individual components with XML whh  5,5maly detection and RUL estimation with assodiate
imported into a database platform and used forhéurt quantitative confidence factors.

diagnostics and prognostics support.
Advanced pattern recognition techniques allow gmesi
early detection of a wide range of incipient fadlsirin
actuator power systems. Even mechanical faults are
susceptible to prognostic detection. The electrical
perturbations caused by mechanical faults are ttkec



When correlated with a specific condition, a meadtein
fault has a precursor signature, same as an imtiféelt
with an electrical origin.

These mechanical faults or conditions include djmeci
problems such as mechanical wear (bearing aging a
lubricant contamination), environmental contribstor
(thermal anomalies or faults preceded by pattennsind
speed and direction), degraded/failed sensors,
degradation of mechanical and electronic intercotme
These techniques help substantially increase coemion
reliability margins and system availability goalshile
reducing (through improved root cause analysis)tlgos
troubleshooting-diagnosis-repair cycles that asgaificant
cost issue for many of these systems.

A particular challenge in setting the prognostigger point

is the avoidance of false-alarms (detection todyear
system’s lifetime) and avoidance of late notifioas. While
the sensors used to acquire SoH information majpdib
diagnostic and prognostic, neither sensor type igesva
prediction of when the failure is likely to occu®ne
predictive analysis methodology collects sensoa dedm
many sources and conditions the collected datanable
probabilistic calculations, including Bayesian cddtions.
Bayesian calculations can be quite complex, eslhecia
when many variables are involved. After data fusiibris
necessary to run a multiplicity of calculationspi@dict the
likelihood of failure of one of the power subsystemithin

a specified period. Accordingly, accurate predittialso
requires collection, conditioning, and processing o
increasingly complex and massive sets of data.

A key benefit of the Ridgetop Electronic Prognastic
Platform is the use of collected information to ccddite
system RUL. There are several techniques emploged f
such estimates including: analysis of actual op#sasand
measurands, existing diagnostic output vectorsgmmstic
sensors, and "canaries". Data from the constefiaifachese
inputs is collected and fused. Algorithms yield qasite
estimates of system health at a particular levehiwithe
system hierarchy. The algorithms available incladaptive
model-based reasoners, RSET, Bayesian networkmegso
and others. With a platform available for quick lgaes,
various options can be explored.

For example, at the board and module levels, at-Buil
Self-Test (BIST) identifies and isolates faults, vasll as
providing predictive capability of impending faiks.
Emphasis is placed on reducing false alarms andifgieag
prognostic techniques to anticipate system deg@adaind

ang

ACTUATOR PROGNOSTICS

Prognostic techniques initially developed by Ridgefor
Switch-Mode Power Supplies (SMPS) are applicable to
edectronic sub-systems, such as the actuator diivea

Ttushless DC motor system.

The brushless DC motor uses permanent magnethadtac
a rotor in place of the armature windings in a
conventional DC motor. Field winding are driven hy
multi-phase (generally three phase) commutationasithat
uses a power drive stage similar to topologies GtB-DC
power converters.

Typically, three Hall sensors detect rotor position
Commutation is based on the Hall sensor inputs. Two
alternative approaches for positioning feedbacklautaking
the back EMF directly from the windings and 2) gse&n
optical sensor for precise position feedback.
microprocessor is generally required to convertitjmos
feedback and motion profiles into a commutationnalg
The DC brushless motor is common in industrial

A

applications requiring higher performance and béliy.
This is due to the motor's brush-free operatiomedir
current/torque relationship, smoother acceleratiow, clean
spark-free operation.

N
H-Bridge _Position 6

Power Supply

\ ;
A T DC MotoriActuator
Pvm* PID AD Quad Hall
F(s) Phase Det. Sensor
Clock Profile 8 |
Figure 7: State Diagram of a Close-Loop DC

Motor/Actuator System

A closed loop system consisting of an actuator and
position sensing feedback loop (Figure 7) tracksitpm
with a preset motion profile. The system acts asaasfer
function responding to perturbations in eithersasition or
motor torque. Critical components — windings, power
switches, sensors, and microprocessor — exhibit-tau
failure progression signatures manifesting in thengfer

allow automated recovery. This prognostic approachynction of the control loop. The non-invasive pmogtic

provides an accurate picture of forthcoming faudtsd
component degradation — the predictive indicatérgiture
— and is extremely useful to the crew. The solutaso
allows timely action needed to avoid costly or stataphic
damage to critical Line Replaceable Units (LRUs} @0
maintain availability/readiness rates for weapostams.

detector is an impulse (either in the motion peofir the
load torque) and data register to record the reagove
waveform for position, angular speed, or force atitA
first-order analysis compares the captured wavefofna
suspect motion system against a baseline signedaoeded
on a new system. Deviations from the baseline sigge
anomaly has been observation of an anomaly.



The simulation shows following error resulting frdead
screw in normal and degraded condition (worn bearin
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Figure 8: An Impulse Response in an Actuator Calsea
Position Jog

SIMULINK M ODEL AND RESULTS

To help better understand the behavior of critpzats in an
EMA circuit and to test our hypotheses
component degradation, the actuator circuit wasulkitad
using the MATLAB Simulink tool set. The circuit irigure
9 is the representation of the DC motor, actuaitcuit, and
the prognostics for the Rotor shaft position.

To File

Figure 9: Actuator Circuit (Simulink Model)

The DC motor consists of electrical and mecharpeals as
illustrated in Figure 10. The electrical term isdeaof an
inductance and a resistance, with a transfer fancti

1
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Voltage In & 01=#10 AL Position

Electrical Tarque Mechanical Integrater
Constant
(2}
Load Torque
<|J=

Speed
Constant

D]

currant

Figure 10: DC Motor (Simulink Model)

Furthermore, the motor converts electrical armatungent
into mechanical torque of the motor as:

T, =k, )

where j is field current, and,iarmature current. The back
emf is given by:

v, =K', @, ®3)

and the supply voltage to the rotor circuit andtiaeof the
rotor as:

regarding

VazRaia+La%+Vb (4)
I dgt’“ =T, T, b, (5)

where o, is angular speed of the motor,, Rrmature

resistance, } armature inductance,Jnertia of the rotor,

and k, dampening constant of the rotor, see Figure IdmFr
these equations the second term, which is of méchlan
nature, can be established. Inertia and torquehsremain

components of this transfer function:

1
G()=—"— 6
T ©

The signal coming from the DC motor is fed into eul
Width Modulator (PWM) and divided into two signals,
which are opposite in magnitude (Figure 12). Thise
different signals are used to turn on and off MOB&Hn
the H-bridge (Figure 13).
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Figure 11: Equivalent Circuit of a DC Motor and Aatare
Mechanical Loading Arm

The H-bridge consists of four MOSFETSs that are eoted
at the gates diagonally (M1 and M3, and M2 and N4je
outputs of the H-bridge are summed and fed into D&
motor.
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Figure 12: PWM Circuit (Simulink Model)
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Figure 13: H — Bridge (Simulink Model)

The signal builder, a ramp, was non-invasively g®tlinto
the circuit. The signal is used to mimic how the BGtor

should behave. It is labeled as Target positiotiddme).

The Phase Detector detects changes in the pobidibreen
the Target position and the actual position of tbéor

(dashed line). That signal is then summed and ayepl as
Following Error. Also, the Rotor position, which dgrectly
taken from the DC motor, is compared to the Tapgsition
on the same graph.

50
40
30
20
10

Rotor Position

Position (deg)

Time (sec)
00075

Figure 14: Simulated Target Position vs. Rotor fasi(All
MOSFETSs are good) (Simulink Model)
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Figure 15. Simulated Following Error (All MOSFETiea
good) (Simulink Model)

Figure 14 and Figure 15 are an example of the ipasind
Following Error when all the components in the git@are
in the working condition.

We can observe on Figure 14 that the Rotor posiison
exactly following the Target position from the s$taf the
simulation until the target position changes dimtt At
that point the Rotor position overshoots, but doneers very
quickly. The overshoot is due to the slow respaise of
the Control system. The Following Error or deviatioom
the target, as seen on Figure 15, is at zero ddnegvhole
simulation. As long as the Rotor position follovi fTarget
position the error is at zero. Oscillations frona trero error
can be seen at the start of simulation and at ldeepvhere
the Target position changes direction. This is twehe
feedback and its response.

In Figure 16 and Figure 17 one of the MOSFETs, M1 o
M3, in the H-bridge breaks down, meaning, thatitiernal

resistance will increase. In Figure 16 the Rotagitpan is at

the higher degree level then the Target positioringuthe

entire simulation. At the point of direction chang®e Rotor
position is overshooting a little, but it compersaand rides
again next to the Target position but still witheanor.
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Figure 16: Simulated Target Position vs. Rotor fasi(M1
or M3 are damaged) (Simulink Model)
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Figure 17: Simulated Following Error (M1 or M3 are
damaged) (Simulink Model)

Figure 17 is the representation of the differeneéwben
Rotor position and the Target position. If the Rqiosition
is at the higher degree level from the Target pmsithen
the Following Error is negative, meaning the rasbould
turn slower. Big errors, at times 1 sec and 6.3 sedhe
Following Error are due to the faster change indinection
of the Target position and the slow response ofRb&or
position.

Rotor Position V5. Target Position
T T T

& J 5 5 S 8 : : alf
a0
S

Tw
e i
;.. Target Position ——.~7~7 H
~ " «——— Rotor Position :

20
&
15

10

T G d Lo g k1

5

5
Time (sec)

[imeorset 0|

Figure 18: Simulated Target position vs. Rotor posi(M2
or M4 are damaged) (Simulink Model)
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Figure 19: Simulated Following Error (M2 or M4 are
damaged) (Simulink Model)

In Figure 18 and Figure 19 one of the other two W&%s
is degraded. In Figure 18, the output of the Rptusition is
below, legging, the Target position all the wayeewhen
the impulse changes its direction. The FollowingoElin

Figure 19 is always positive, but it increases ecrdases

depending on how close the Rotor position is toheget
position.

When the H-bridge is working properly the Followiggor
is at zero because the Rotor position is followemgctly the
Target position. This can be described in the exarmapthe
airplane’s wing-flap. When the Target position & t© go
to 40 degrees and then is lowered to 30 degreesotbe
position should follow the same line. The DC Mo&wod its
control system have a very slow response time hatlis
why discrepancies in the position graphs can be. deeery
time the direction of the Target position is chahgle
overshoot of the Rotor position is seen due to gloav
response of the control system.

When one of the sides of the H-bridge is not fiordtig
properly, there is higher resistance in one ofMI@SFETS,
then the response of the circuit is different. I Mr M3
break down, the DC Motor is going to be driven learand
the Rotor position is going to be at the higherrdeghen
the Target position. The Following Error is going be
positive, meaning the DC Motor should be slowed now
The current in the side that has higher resistét@wer in
value then the other side of the H-bridge. Howeifeme of
the other two MOSFETS, M2 or M4, break down thea th
Rotor position is legging the target position ahddes not
reach target degrees. In the airplane wing flapseterrors
in position can cause airplane to turn slower steiathen
expected. Exact functioning of these parts is wengial for
the stability of the airplane.

RETURN ON INVESTMENT

In general, the Return-on-Investment (ROI) for dld@ption
of electronic prognostics consists of an analydisthe
savings associated with the implementation, lessctist of
implementation, divided by the investment requirg&tiis
relationship is mathematically stated:

ROI = (Savings — Implementation costs)/
(Investment required)

For example, in the case of aircraft, the iderdifs®urces of
savings from prognostics include:

« Increased aircraft availability
« Reduced loss of aircraft

¢ Reduction in unplanned maintenance (all aircraft no

just those in the battlefield) of up to 20% [8]
* Moving spares to the proper place (logistics)
e Better use of inventory
e Better spending controls on spare inventory

« Reduced expenditure in armaments required
accomplish mission

* Increase in mission success rate



The costs of applying prognostics can be separatixd
three categories:

* Non-recurring engineering (NRE) cost of adding the

prognostics to an actuator

These factors are the primary assumptions needethi@
the recall cost calculation.

Table 2: Recall Cost Assumptions

«  Per unit costs of the prognostic components Recall Cost Assumptions Value

« False Alarm Cost (if failure rate of the prognostic _LRUs per unit 1
circuitry approaches the failure rate of the congiun _Labor cost per hour $100
being monitored) Labor time per unit 1 hour

In reference [9] it was shown that ROI for progisst _Recall administrative cost per unit $150

enabling high efficiency power converters can beap0%
and is often significantly higher. Separately,

Sun

Microsystems found that proper adoption of eledtton With these factors identified and estimated, thealtecost

prognostics to their Blade servers reduced theifF Mdtes
from over 50% to less than 10%.

Missed Opportunity: the VW Passat Example

Due to the high cost and complexity involved inghasing,
financing, and servicing aircraft, ROI is often fulifilt to
assess. A more accessible but equally compellisg can
be made examining the recent recall and on-gointpN
Highway Traffic Safety Administration (NHTSA) probs
the VW Passat.

An investigation, began in May 2007, revealed thieael
been 78 reports of engine fires and two injuriesoived
with the VW Passat. Specifically, the Passat seffans the

can be calculated.

Recall Cost (per unit) = $423.76
Recall Cost (total) = $146,469,254

With a $500K investment cost as the price for gocate
prognostics IP license, the ROI calculation is:

ROI = [146,620,960 — 500,000] / 500,000 = 292%

Not bad for an investment of $0.71 per unit (car),
particularly when weighted against an estimated3%22
recall cost per car which does not take into actoun
inestimable values such as customer satisfactiorgstor
confidence, and positive brand recognition. Whitandge

2000-2003 model year equipped with 4- and 6-cylindeto these somewhat nebulous values is hard to astesmt

engines. The engine fires are attributed to failafethe
ignition coil. [10]

Table 1: Statistical Data for VW Passat Recall [11]

Recall Specifics Data

Total Units 352,668
Affected (Recalled) Units 345,642 [12]
Failure Incidents (to date) 78

Failure Cause (LRU) Ignition Coil
Warranty Claims 14850

LRU Cost $173.76
Unit Cost, Low $21,750
Unit Cost, High $31,575
Unit Cost, Average $26,662

Before calculating ROI, an estimate is requiredtfier recall
cost. Factors affecting the recall cost include:

e LRUs per unit

» Labor cost per hour

e Labor time

* Recall administrative cost per unit

% Gross, K. “Sun Microsystems Electronic Prognosiggerience”, NDIA
Conference 2006, Miami, Florida

hard at all to track and tally the losses incurrey
businesses suffering from defect-related set-backs.

For VW, a faulty component with a failure rate aD2%
occurring in 78 cars resulted in the recall of 800, cars or
96.1% of all cars manufactured over a four-yearogerOr,
to put it in another way, $13,000 (approximatele arase)
of defective ignition coils cost the company $146iflion

dollars. That comes out to $1.9 million dollars defective
ignition coil.

One benefit, yet to be mentioned, of a succességtr®nic
prognostics deployment is the reduction in the \aafects
and failures that are the root causes of a proougthacks,
refunds, product returns, and recall campaigns.

These ROI calculation demonstrate the tremendoirss ga
possible through a modest investment as well agdke of
missed opportunities. Electronic prognostics are af
those rare value-added propositions customers eaitye
understand and justify when couched in terms ofrangd
quality, performance, and maintenance reductions.

SUMMARY

This paper shows the efficacy of using electronic
prognostics on actuator drive systems used in couiaie
and mil-aero systems. Electronic prognostics catirtked

to larger networks to provide a dynamically updated
inventory of assets indicating state-of-health eswhaining



useful life. This is very beneficial in military drindustrial
automation settings and can link to larger systewell
prognostics, such as the generator system in Fg@Qyeand
maintenance ALS.

This incorporates external prognostics extractidachs
multiplexed to external Integrated Health Monitgrin
System.

Diesel Engine

I

Governor

Synchronous
Generator

Figure 20: A System-Level Solution for Synchronous
Generator

The non-invasive approach to electronic prognostas be

implemented on a variety of power electronic system

where access to internal circuit nodes is not abel
Starting with a state diagram description of thetem
operating with feedback, one can determine theesgonse
to a given input perturbation. Finally, with
understanding of how changes in the condition tériar
components affect the response function,
degradation can be measured indirectly. Faultilora

progression models are used to derive RUL estimstio

the
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This approach has tremendous advantage over direct
measurement schemes in which sensors must be addgd] John Maddox, NHTSA Investigation PE 07-02& ‘o

inside the circuit that by virtue of their own @dility can
increase the probability of failure and reduce thean
lifetime of the system. High-reliability, high-fautoverage
solutions can be implemented for power electronisimg
existing terminal access.
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